Electrophysical agents (EPAs) are those modalities that administer thermal, mechanical, electrical or light energy to the patient to provide physiological effects and therapeutic benefits. Physiotherapists use these as an adjunct to other treatment and management techniques in most situations.
Electrophysical Agents In Physio
Electro-physical agents (EPAs) are fundamental components in the management arsenal of physiotherapy. The objective of this study was to provide a comprehensive understanding of the factors affecting the decisions made by Physiotherapists (PTs) when choosing to apply EPAs as a treatment modality.
The findings regarding availability of EPAs and their frequency of use reported by the respondents in the present study are similar to results of previous studies. As in earlier studies, the most commonly available and frequently used agents were US, heat packs, cold packs/ice, and electrical stimulation for sensory neuromodulation [13,14,18,19]. These findings indicate that the clinical utility of these agents appears to be similar between different countries.
Cold agents are modalities that cool superficial tissues, and deeper tissues if applied for a long enough period of time. Examples include ice packs (this warms up quickly and therefore are not recommended), crushed ice, ice water bath, coolant spray, quick ice, cool whirlpool and contrast baths.
Lower wavelength and frequency light penetrate tissue more deeply. Therefore, lasers with a wavelength between 600-1300 nm are typically used in physiotherapy treatment. More specifically, common types of lasers are red waveband (600-700 nm) and infrared waveband (700-950 nm) lasers.
The aim of the guidelines was to provide a resource that could guide clinical decision making for the safe and effective use of EPAs; evidence-based practice was at the forefront of their approach. Their purpose was not to address indications for the use of EPAs, but rather to describe the evidence and prevailing opinions on the most common contraindications to and precautions for the effective use of EPAs, and specifically six commonly used EPAs: cold (cryotherapy), heat (superficial thermal agents), electrical stimulation (TENS, NMES, HVPC), low-level laser therapy, short-wave diathermy, and therapeutic ultrasound.
IFC and TENS use gentle electrical impulses to reduce pain, increase blood flow, and treat deep pains that are hard to reach through other treatments. They are commonly used in physiotherapy practise , and can achieve very positive results in assisting recovery from soft tissue injuries.
Ninety-one physiotherapy students were randomized into three conditions. They performed a pre-test and a post-test to evaluate their gains in conceptual knowledge and problem-solving skills (transfer performance) in intervention selection. They studied three pairs of worked/completion examples in a digital learning environment. Worked examples consisted of a written reasoning process for selecting an optimal physiotherapy intervention for a patient. The completion examples were partially worked out, with the last few problem-solving steps left blank for students to complete. The students then had to engage in additional self-explanation, concept map completion or model concept map study in order to synthesize and deepen their knowledge of the key concepts and problem-solving steps.
Clinical reasoning is a decision-making process that allows clinicians to determine the correct diagnosis and select the most appropriate intervention for a clinical problem [1,2]. Developing clinical reasoning skills is quite a challenge for novice learners since these abilities are, in part, based on tacit knowledge gained through clinical experience [3]. Example-based learning is an instructional method that can help foster clinical reasoning by providing learners with examples of clinical cases and their management [4,5]. Example-based learning has been shown to be more effective when learners self-explain the material being learned [6]. Adding prompts to induce self-explanations also fosters acquisition of problem-solving skills from faded worked examples, that is, when learners first study a fully worked-out example and then complete steps in partially worked-out examples [7]. Self-explanation is thought to help learners achieve more meaningful learning by deepening their understanding of the information presented. Constructing concept maps (i.e., concept mapping) and studying concept maps (i.e., concept map study) are other instructional activities that can promote meaningful learning by engaging learners in reorganizing their knowledge. However, concept maps have received little attention in combination with example-based learning. In health profession education, concept maps are often used in association with other instructional methods as additional integrative activities [8]. This raises the question as to which of these three integrative learning activities (i.e., self-explaining, concept mapping, or concept map study) would be best for promoting meaningful learning in addition to example-based learning among physiotherapy students.
Self-explanation is expected to be the best activity for promoting problem-solving skills in learners studying actual, complex cases. Evidence suggests that self-explanation is an efficient activity for promoting transfer [64,73]. Self-explanation induces cognitive processes that are geared more toward understanding the learning material [63] than organizing the information as is the case with concept mapping. Moreover, one can expect that concept mapping would be less effective than self-explanation for fostering problem-solving skills. That is because learners engaged in concept mapping need to dedicate a large part of their working memory to manipulating and organizing concepts and links in order to produce meaningful maps [77,80,81] at the expense of learning how to solve problems. However, one should notice that some evidence in health profession education shows that concept mapping can lead to significant improvements in understanding and problem-solving when compared to traditional teaching methods [54,92,93]. Concept map study is thought to be the best activity for promoting conceptual knowledge performance. A large body of evidence shows the potential of concept map study for improving knowledge recall [86-89], although its effects for improving transfer are not well substantiated [83]. However, one should take into account that concept map study might have other potential benefits because it is expected that it will impose lower cognitive load than self-explanation and concept mapping. Parallel to how example study reduces cognitive load compared to problem solving, learners engaged in concept map study do not have to invest effort in searching for the answer to a question or the connection between concepts, but rather, devote all available working memory resources to studying the connections between concepts. As such, concept map study can be expected to have a beneficial effect on cognitive load and learning. These hypotheses will be tested by comparing effort investment (an indicator of cognitive load) and learning outcomes among novice students who study worked/completion example pairs and additionally engage in self-explaining, concept mapping, or concept map study. Since clinical reasoning performance is context-dependent, it is relevant to present the domain of expertise in which this study will test these hypotheses: physiotherapy intervention knowledge.
As in other health professions, clinical reasoning in the physiotherapy domain involves cognitive processes such as pattern recognition and hypothetico-deductive reasoning to solve ill-structured clinical problems [94,95]. In this study, the field of knowledge will be the use of electrophysical agents in physiotherapy to treat patients with physical impairments. These modalities use thermal, acoustic, electrical and electromagnetic energy forms such as ultrasound therapy, therapeutic electrical currents, and low-level laser therapy that are often used by physiotherapists to treat patients with musculoskeletal, orthopaedic and neurological impairments [96]. The process-oriented worked examples designed, show the complete decision-making process involved in the selection of the optimal intervention among these agents. It is possible to present this complete decision-making process in the examples, because it relies on the selection of the best intervention among a restricted number of possibilities (i.e., electrophysical agent modalities). In the physiotherapy domain, problem-solving tasks that involve decision-making processes can be modeled by the following sequence of actions: problem recognition, problem definition, problem analysis, data management, solution development, solution implementation and outcome evaluation [97,98]. In this model, solution development includes data analysis and solution selection, whereas solution implementation refers to applying the solution to problem [97]. Process-oriented worked examples include the rationale for these steps (or actions) in order to help learners achieve meaningful learning on how to solve new problems in physiotherapy using electrophysical agents.
In this study, learners studying worked/completion examples pairs were additionally engaged in self-explanation, concept map completion or model concept map study to deepen their understanding and knowledge of physiotherapy intervention and to promote meaningful learning. This study aimed to investigate which of these additional activities would be best for improving conceptual knowledge and problem-solving skills. It was expected that the self-explanation and concept map study activities would be most effective in fostering problem-solving skills and conceptual knowledge, respectively.
Self-explaining did not foster conceptual knowledge; however; conceptual knowledge was improved by concept map study. Since these maps provided a meaningful outline of the concepts pertaining to physiotherapy intervention knowledge, it might have helped students to incorporate in-depth concepts into their schemas compared to the other conditions, where this information was lacking or had to be generated by the students. In this respect, one should note that complete and incomplete concept maps provided more information than self-explanation. Therefore, care should be taken when interpreting these results since rote memorization of the information presented in maps might have accounted for the higher conceptual knowledge in the concept map study condition compared to the self-explanation condition. Studying these maps even lowered the cognitive load compared to other conditions. This is consistent with previous findings that showed the potential of concept map study in improving recall performance [85-89]. Concept maps may facilitate learning by summarizing the information [83]. When compared to text summaries, concept maps can be reviewed more quickly, allowing learners to review the information several times within a fixed time period [83]. By presenting models, concepts and links in an organized way, concept maps chunk the information, allow learners to manage and assimilate a large amount of information [82]. Our results are also consistent with a previous review reporting more evidence on the effects of map study in improving recall than transfer performance [83]. This suggests that conceptual knowledge may be necessary, but not sufficient to guide problem solving, for which strategy knowledge (i.e., understanding how to handle a task and why one approach is more effective for a certain problem type than another) is crucial. By directly comparing these conditions, the present study provided further insight on the potential of concept map study to foster conceptual knowledge when compared to self-explanation and concept mapping. Moreover, this raises the question as to whether, in example-based learning, the combination of self-explanation and concept map study could promote learning more than the addition of each of these integrative activities alone. In light of present results, one can hypothesize that additionally providing self-explanations of principles presented in examples followed by the study of a model concept map presenting these principles might foster both problem-solving skills and conceptual knowledge. Future studies should address the effects of combining these integrative learning activities on clinical reasoning skills of learners engaged in example-based learning. 2ff7e9595c
Comments